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Abstract. Particle penetration through a square potential barrier is studied with the Dirac 
equation and relativistic tunnelling occurs in an overcritical potential. Relations between 
this phenomenon and the Klein paradox are discussed. However, relativistic correction to 
the mesoscopic conduction. the Landauer formula, is negligible and relativistic tunnelling 
would not occur in solid-state physics owing to the barrier height never reaching the 
over-critical region. Relativistic tunnelling is essentially a high-energy phenomenon. 

Barrier penetration is an important problem in scattering theory [l] and provides 
theoretical models for a variety of phenomena, e.g. tunnelling in Esaki diodes and 
quantum wells [Z], alpha decay [3], quarkonium confinement [4], etc. In high-energy 
physics, application of the Dirac equation leads to the Klein paradox, which gives 
transmission probabilities different (strikingly larger) from the solutions of the 
Schrodinger equation under the overcritical scattering potential condition [ 5 ] .  The 
Klein paradox can be explained by hole theory [4,6]. The prediction of Dirac’s theory 
on the vacuum change in supercritical fields has been verified by experiments [4,6]. 
Hence, it is desirable to find a solution of the Dirac equation for a general square 
barrier and check its differences from that of the Schrodinger equation. In this paper 
we take the Landauer formula of mesoscopic conduction as an example. 

The electrical-conductivity behaviour of ordinary metals has been studied exten- 
sively based on successive theoretical models and is thought to be well understood. 
The quantized free electron theory of metallic conduction concentrates on electron 
distribution changes resulting from acceleration by an applied electrical field and 
deceleration by scattering centres. The electrical conductivity can also be studied with 
the Kubo formula based on the linear response theory [7], in which the applied field 
is the causative agent and the resulting current Bow the response. The traditional 
description of conductivity is challenged by the onset of strong-disorder (localization 
of electrons) and miniaturization of electronic devices. The unusual properties of wave 
phenomena in disordered media have been observed in submicron structures at low 
temperature, in which the electron wavefunctions maintain their quantum mechanical 
phase coherence. Hence, electron transport has to be studied in terms of transmission 
coefficients and electron waveguides rather than of the Boltzmann transport equation. 
Landauer proposed this novel point of view and related the conductance of a quantum 
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mechanical system to scattering problems [8-lo]. The Landauer formula 

h R h l - T  R 
e e’l-R-e’ T 

where R, is the resistance and R and Ta re  the reflection and transmission coefficients 
respectively, plays an important role in mesoscopic physics. It was derived for a strictly 
one-dimensional geometry and was later extended by Biittiker et aI to the multiprobe 
and multichannel disordered system so as to compare with experimental work on 
quantum transport phenomena (e.g. [ I l l ) .  

In this paper the relativistic extension of the Landauer formula is studied. The 
relativistic effect, though weak and covered by other effects in general, may come to 
the fore when contributions of other mechanisms vanish or cancel each other as in 
the ground-state splitting of S-state ions, e.g. Gd” and Mn” [12]. It might modify 
well known phenomenon, e.g. the interference pattern of the Aharonov-Bohm effect 
of relativistic particles with spin could be affected ifthe initial particle beam is polarized 
[ 13, 141. It may also produce new phenomena such as the positron predicted by Dirac’s 
theory. All these, together with the Klein paradox, make us interested in finding any 
new results from the application of Dirac’s theory to the Landauer formula. 

Following Landauer’s derivation 181, the resistance of a one-dimensional conductor 
sandwiched between two phase-randomizing reservoirs (where all the dissipation 
occurs) is 

ZR ap/an &=-- 
1-R e2vF 

where p is the chemical potential (equal to the Fermi energy at 0 K),  n the electron 
density and t+ the Fermi velocity. In the relativistic case, the particle number density 
n is 

n = 2p,/ 7rh (3) 

p2= %’:=p:+m2=(7rhn/2)2+m2 (4) 

for one-dimensional Fermi gas where pF is the Fermi momentum, and the Fermi energy 

where m is the rest mass of the electron and c is taken to be 1. Substituting equation 
(4) into equation (2) we obtain 

R, = (?rh/e2) (R/T)m/[ (7rhn/2)2+ m2]‘/’. (5) 
This is the relativistic extension of the Landauer formula. The relativistic correction 
(RC) can be estimated from 

[ 1 + ( ~ h n / 2 m c ) ~ ] - ’ / ~ =  1 - ( 1 / 8 ) ( ~ h h n / m c ) ~  

in the first-order approximation. The second term is only about 0.06% if n is taken as 
the cube root of the gold electron concentration (5.8 x IO2* ~n-~) .  RC is negligible and 
usually, (rhn/2)’<< m2 is satisfied. Equation (5) reduces to equation (1) in the non- 
relativistic limit. 

However, the relativistic effect also shows in the transmission behaviour of low- 
energy electrons. Let U; consider a sandwich device shown in figure 1, where regions 
I and 111 are ideal leads separately connect to two incoherent reservoirs, and I1 is the 
disordered region, as an obstacle, represented by a square barrier potential of height 
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Figure 1. A one-dimensional square potential barrier of height V and width a. 

V in [0, a]. Figure 1 is just the Landauer situation in which a stream of electrons (in 
the region z < 0) with unit density are incident upon the potential bamer in the direction 
of the z-axis. A fraction R is reflected and a fraction T transmitted. The plane-wave 
functions in various regions are 

in unit system with h = 1, c = 1, where the subscripts 0, r, t and b are for incident, 
reflected, transmitted and bamer respectively, k and k ,  are electron momenta outside 
and within the barrier respectively 

E 2 = m 2 + k 2  (7) 

( E -  V)'= m2+ k:. ( 8 )  

The spin orientation does not affect the results of bamer penetration and here only 
the spin-up electron is considered. Boundary conditions at z = 0 and a lead to 

1 + r =  b,  + b2 k ( 1 -  r ) / ( m + E )  = k l (b l  - b 2 ) / ( m + E  - V )  

f eiko b, e"'* + b2 eik," f k e ' k " / ( m + E ) = k , ( b , e ' h ~ " - b , e - i h ' " ) / ( m + E -  V) 
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which can be expressed in a matrix form 

1 0 -1 -1 r 
0 - kl/( m + E - V) k l / (m+E-V)  ] [i] 

-eih,o - e-ih,l" 

keix"/(m+E) -k,e'*I"/(m+E-V) k,e-"L'/(m+E- V) [-./lg' E )  -1 

= [ k / ( g + E i ,  ( 9 )  

R and T are obtained by solving equation (9 )  

R = lrl' = m' V2 sin'(k,a)/[(k, k cos(k,a))'+ (E' - m' - EV)' sin2(k,n)] 

= (mV/k,k)' sin2(kla)/[l + (mV/k,k)2 sin2(kla)] (10) 

= l/[l+(mV/k,k)' sin2(kln)] (11) 

T= ltI2= k:k2/[(k,k cos(k,a))2+(E2- m2-EV)2 sin'(k,a)] 

and they satisfy R + T =  1. In the non-relativistic limit, k2 =2mE and k:=2m(E - V) 
so that equation (11) reduces to 

T, = { 1 + v ~ / ~ E ( E  - v)] sin2[ aJ2m( E - v)]}-' (12) 
which is in agreement with that from the Schrodinger equation (e.g. [15]). 

The transmission amplitude of equation ( 1  1) has remarkably different behaviour 
from that of equation (12) when the barrier height V approaches the critical potential, 
defined as V,=E+m Taking an extreme case of V+m, it can be seen that the 
behaviours of barrier tunnelling based on non-relativistic and relativistic physics are 
essentially opposite. Equation (12) predicts T,+O when V+oo and hence, R,+oo. A 
Schrodinger particle cannot penetrate an infinite barrier, as shown in figure l(b) of 
[15]. However, since 

lim [ mV/(  klk) I' = m'/( E z  - m') 
V-m 

then 

T -  v-m [ I  + m2 sin2(k,a)/(E2- m')] (13) 

based on equation ( l l ) ,  and hence low-energy Dirac particles can penetrate a bamer 
of infinite height. Furthermore, if k,a = I?r ( I  = 0, 1 ,2 ,3 , .  . .), T becomes one and 
relativistic tunnelling occurs. Correspondingly, the resistance 

Re= (fi?r/e2)[m2 sin2(k,a)/(E2- m')](m/[(nd1/2)~+ m'l} (14) 

when V +  co and Re = 0 in relativistic tunnelling. 
The relativistic tunnelling can be understood by the Klein-paradox explanation 

[5-6]. With the critical potential, the energies of the electron level spectrum within 
the barrier region are lifted by V and the occupied lower-energy states continuum (in 
the energy region smaller than V - m )  'outcrop', which overlaps a part of the positive- 
energy spectrum outside the barrier. Incident electrons impact onto the potential barrier 
and can thus h o c k  out electrons from these states inside the barrier so as to induce 
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electron-positron pair-production at the bamer. Then there are positron waves inside 
the bamer and resonance penetration occurs. The relativistic tunnelling is associated 
with induced decay of vacuum in overcritical fields. Application of a supercritical field 
changes the Dirac vacuum, and thus drastically alters the characteristics of sample 
including its resistance, which originates from the same mechanism of the Klein 
paradox. 

However, the discovery of relativistic tunnelling does not mean failure of insulation 
in microelectronics since, in solid-state physics, the barrier height (representing a 
mesoscopic scattering region) is only in the order of 10 eV but the critical potential in 
the order of 1 MeV. Relativistic tunnelling would not occur in solid-state conduction 
even though inappropriate use of 'infinite barrier height' is frequently seen. On the 
contrary, it is a high energy phenomenon and plays an important role in quarkonium 
confinement [4]. 

In summary, the problem of particle (electron) penetration through a square 
potential barrier is solved with the Dirac equation. It is found that the transmission 
coefficient can be equal to one even when the bamer height tends to infinity. This 
striking phenomenon is named relativistic tunnelling and can be understood on the 
basis of the Klein paradox. However, relativistic tunnelling only occurs in the high- 
energy region (barrier height- MeV) and for solid-state conduction, solutions of the 
Schrodinger equation are enough for interpreting experiments. 
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